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Type-Insensitive ODE Codes Based on 
Implicit A ( a)-Stable Formulas* 

By L. F. Shampine 

Abstract. Previous work on A-stable formulas is extended to A(a)-stable formulas, which are 
far more important in practice. Some important improvements in technique based on another 
interation method and an idea of Enright for the efficient handling of Jacobians are proposed. 
Implementation details and numerical examples are provided for a research-grade code. 

1. Introduction. This paper is a sequel to the paper [10] which treats A-stable 
formulas. Although largely independent, it cannot be properly understood without 
the companion paper. For this reason and to avoid repetition of some lengthy 
arguments, it is presumed that the reader has studied [10]. 

Many of the most popular formulas for the solution of stiff ODE problems are 
not A-stable so that extending the analysis of [10] is of great practical value. The 
backward differentiation formulas (BDF) of orders 3-6 are examples which are 
A( a)-stable, and may be thought of as prototypes for the formulas treated here. 

The task at hand is qualitatively different from that of [10]. There stiffness 
amounted to selecting an efficient iteration method for the evaluation of implicit 
formulas. Stability played no obvious role there, but here the behavior of the 
integration can be affected by stability. 

Part of the results reported here are equally relevant to A-stable formulas. We 
describe improvements of technique based upon an idea of Enright and still another 
iteration method. Some of the practical details not fully specified in [10] will be 
developed. Some numerical results with A-stable formulas will be presented. 

The changes to [10] to accomodate A(a)-stable formulas are more conceptual than 
practical. We shall first discuss the practical significance of formulas which are not 
A-stable. Then we shall investigate those factors affecting step size and iteration 
method when a stability restriction is possible. It develops that whatever practical 
difficulty which might arise is due to the formula and is not aggravated by our 
switching iteration methods. The inherent trouble with A(a)-stable formulas must be 
taken up in our investigation, and as a consequence we propose ways to ameliorate 
it. Some numerical results will be given. 

2. How Troublesome Are A(a)-Stable Formulas?. Our aim is to select an efficient 
scheme for the evaluation of implicit formulas. It seems unlikely that one would base 
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a general purpose code intended to handle stiff problems on formulas which were 
not A(a)-stable. From here on we suppose the formula A(a)-stable. When one 
chooses to work with an A(a)-stable formula, one has, in effect, chosen to restrict 
the domain of applicability of the code to those problems such that the Jacobian, 
evaluated anywhere along the solution, has eigenvalues only in the appropriate 
sector of the complex plane. Should some Jacobian have eigenvalues too close to the 
imaginary axis, a poor performance is expected (and often observed). 

The behavior of an A(a)-stable formula on a problem for which it is intended is 
the same as that of an A-stable formula applied to the same problem. This obvious 
remark shows us that the considerations of [10] are unaltered for such problems. In 
this sense there is no real difficulty with the application of our ideas to A( a)-stable 
formulas. 

As mentioned, it is expected that the typical code based on an A(a)-stable formula 
will behave badly when it actually suffers a restriction on the step size due to 
stability. The comparative testing of [2] shows what can happen with the BDF. The 
problem B5 leads to a stability restriction for the BDF of orders greater than 4. (It is 
hoped in the popular variable order BDF codes that the restriction will be avoided 
by resorting to the more stable lower order formulas. Unfortunately this does not 
always happen [13].) In the present context we are only responsible for seeing that 
our schemes for selecting the iteration method do not make the trouble worse. The 
situation has seen very little attention. Because of the close connection with the 
present study, we shall point out improvements of the technique employed in current 
codes in this situation. 

3. Efficient Use of Jacobians. In [8] we promoted saving Jacobians for reuse in the 
simplified Newton iterations. W. H. Enright [1] has proposed a scheme which offers 
important advantages in the present context. We shall point out here some argu- 
ments in its favor not stated by Enright and also a convenient software device for its 
efficient use. 

We are solving the system 

Y' f(X, y). 
The implicit formula has the generic form 

(1) y = hyf(y) +, 

where y is the solution value for the step to x,+ I, y is a constant characteristic of the 
formula, 4 lumps together previously computed quantities, and the independent 
variable x is suppressed. The direction of integration is chosen so that h > 0. The 
iteration schemes considered in [10] are 

(2) (I-hyJ)(ynl - 
ym) = + hyf(yn?) yn 

Here J 0 O is simple iteration, and J, a nontrivial approximation to the Jacobian 
matrix f3, is a simplified Newton iteration. 

First we describe Enright's basic idea. The simplified Newton iteration must 
repeatedly solve linear systems with the iteration matrix I - hyJ. What is going on 
is seen more clearly if the linear system is scaled to result in the matrix J - (1 hy)I. 
(We recommend this as a cheaper and more natural scaling for stiff problems 
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anyway.) One does a similarity reduction to the Hessenberg form of the iteration 
matrix, 

J- I- LHL-'. 
hy 

Here L is unit lower triangular and H is upper Hessenberg. (For notational 
simplicity, here and elsewhere we leave out permutation matrices resulting from 
pivoting.) One can solve the necessary linear systems with this factored matrix 
instead of the usual LU factorization of lower and upper triangular matrices. The 
advantage comes when one wants to change step size or method so that hy - h'-y'. 
Then 

hJy' L(H + (Ihy hy' )I )L-'. 

Thus the factorization can be changed trivially to correspond to the new h'y'. 
The Hessenberg factorization requires an unimportant amount of additional 

storage. It does require some extra work to solve the linear systems which Enright 
proposes to reduce by further factoring H= LU into bidiagonal L and upper 
triangular U. The additional factorization facilitates solving the linear systems 
repetitively, but, on a change of hy, one must reconstruct H by multiplying out LU, 
alter its diagonal, and refactor it. 

Our colleague H. A. Watts raised the question to us as to whether it was better to 
pay the storage cost of keeping a copy of H and so avoid the expense and inaccuracy 
of frequently reconstructing H. This depends on the user's requirements, but we 
noted a very convenient way to handle the matter within the DEPAC software 
interface design [12]. In this design the user provides to the code a working array and 
the length of the array. He is instructed as to the minimum length of the array which 
will suffice for the solution of the problem. Here this length is that corresponding to 
reconstruction of H. The instructions could then add that if the user can provide a 
specific larger amount of storage, the code will run somewhat faster. This will not 
surprise him. The code itself simply checks the amount of storage provided and uses 
the appropriate technique internally. The user is never bothered about what is being 
done inside the code. Storing the Hessenberg matrix should often lead to a perfectly 
acceptable amount of total storage and lead to a noticeable improvement in speed. 

The advantage of Enright's idea is that the frequent change of step size is not 
accompanied by a corresponding expensive factorization of the iteration matrix. He 
did not point it out, but the device alone goes a long way towards making a code 
type-insensitive. If the code is applied to a nonstiff problem, the Jacobian is 
unimportant in the iteration matrix-J = 0 (simple iteration) would suffice. Any 
reasonable algorithm for deciding when to form a new J should lead to relatively few 
Jacobian evaluations when the problem is not stiff and of course, correspondingly 
few matrix factorizations. Another important situation in which Enright's scheme is 
very useful is when the step size is being restrained for reasons of stability. We shall 
amplify this later after describing what is happening to the step size then. 

In what follows we shall assume Enright's idea is used. Unfortunately, the 
Hessenberg reduction does not preserve structure in the Jacobian. When the Jacobian 
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is highly structured, a copy should be kept and an LU factorization used. The 
cheaper linear algebra and the greatly reduced storage then compensate for the extra 
matrix factorizations. 

4. Effects of a Stability Restriction. What happens when a method with a finite 
stability region is presented with a stiff problem? Some arguments can be found in 
[5], [11] but the basic idea is simple and plausible: If the step size corresponds to 
being outside the stability region, propagated error is amplified until the local error 
estimator detects it and reduces the step size. If the step size corresponds to being 
inside the stability region, propagated error is damped until the error estimator 
realizes that the step size can be increased. The consequence is that the average step 
size corresponds to being on the stability boundary. 

As in [10] let hacc be the largest step size which would permit the local accuracy 
requirement to be satisfied. The difficulty for us is that most of the time the 
numerical solution contains a substantial component of propagated error. It looks 
"rough", and the estimate h of hac may be quite a lot smaller than h which 
corresponds to the smooth solution being tracked. If the code were to hold the step 
size constant long enough while in the stability region, a good estimate of hacc could 
be obtained. The situation is exaggerated in our research code based on the 8-family 
of one-step formulas. Past solution values are used in forming hesO but the memory 
is very short and erratic values of hest are observed. 

The idea of Enright sketched in Section 3 appears to be very helpful when the step 
size is being restrained by stability. The step size is continually changing, but there is 
no need for a new Jacobian. Unfortunately, the matter is a little tricky. Going outside 
the stability region may be accompanied by a convergence failure rather than a 
rejected step, particularly when using the stringent acceptance criterion of [6], [15]. 
The typical algorithm in present codes regards this as a signal to form a new 
Jacobian. In the algorithm described in Section 7 we have attempted to avoid these 
unnecessary Jacobian evaluations. It is to be appreciated that this difficulty does not 
arise from our ideas about switching iteration methods. 

5. A More Efficient Iteration Method. When solving (1) by simple iteration, the 
rate of convergence is determined by h yf1, 1. In [10] we proposed using the weighted 
maximum norm of the approximate Jacobian J to estimate this. To avoid notational 
complication, we shall write down only the unweighted norm: 

HhyJH - max hy:E IJ,1j 
II 

Simple iteration was used whenever 

(3) 11 hyJ 1 r < 1 

for some r deemed an acceptable rate of convergence. As we remarked at the time, it 
seemed a shame to switch from Newton to simple iteration and make no further use 
of J. 

The Jacobi iteration for solving (1) is 

(I - hyD)(yn?+I - yi) = 4 + hyf(ynl) - y ", 
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where D diag{J,,}. The equivalent of (3) is now 

(4) H( I- hyD) h hy( J - D)l max IYI I_ I 
111 r< 1. 1-I h-yJ, I 

It is just as easy to use the Jacobi iteration as simple iteration. According to the 
criterion used, it is at least as effective. To see this, suppose (3) holds. Then the 
Jacobi iteration is well defined because 

1 >r r hyJI jhyJ,,j eachi 

hence 

1-hyJ,,>0 eachi. 

A simple computation shows that if (3) holds, then (4) must also hold. 
The Jacobi iteration can be extremely advantageous. If a diagonal element J, < 0 

and it dominates the off-diagonal elements sufficiently, 

E I Jij I < r I JI,,l 

the row puts no restriction on the step size to achieve the rate of convergence r in (4). 
Clearly, arbitrarily stiff problems can be solved with the Jacobi iteration provided 
that they have the right Jacobian structure. We do not know how important this is in 
practice. A very popular method of analysis in chemical kinetics makes use of a 
quasi steady state hypothesis. A solution component y,(x) satisfies an equation of 
the form 

Yi' Pi (Yl, JO Yn Q, ( Yl, JO,Y Y 

It is assumed that both P, and Q, are roughly constant and that Q, > 1. Considering 
the corresponding row of the Jacobian of the system, we see that such an equation 
places no restriction on the step size which might be used with the Jacobi iteration. 

We propose using simple iteration until the first Jacobian is formed and thereafter 
using the Jacobi iteration. Every time a Jacobian J is formed we must save the 
diagonal in a separate array because we plan to overwrite J if we ever do a matrix 
factorization involving it. In our research code we aim for a rate r = 0.5. When the 
Jacobian is formed, we determine the largest step size, hitm~,, which according to (4) 
would yield this rate of convergence. At the same time we compute II J II which, 
through monitoring of h 11 J 11, gives us a measure of the stiffness of the problem. 

After forming a Jacobian J, we may switch back and forth between a Jacobi 
iteration and a simplified Newton iteration using the same J. Our intention is 
basically to use the Jacobi iteration whenever h < hitmax- As we discussed at length 
in [10], the information used to determine h itmax in (4) may become out of date as the 
Jacobian changes along the solution curve. A useful refinement is to improve the 
value for hitmax based on whatever observations are available. Whenever we actually 
use the Jacobi iteration and should need at least two iterations, we obtain an 
estimate of the rate of convergence, 

11 ym?2 ym?I1 

m2 r? ym? I - ym H 
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The rate of convergence is essentially linear in the step size, so we can estimate the 
largest step size which would yield convergence at a rate r = 0.5. If this estimate is 
smaller than the current hitmn,, we reduce hitmn, to this value. If it is larger, we take 
no action. This is because we are certain the rate of contraction is no faster than the 
observed rate, but we cannot exclude the possibility that the true rate is slower. 

6. Interaction of Iteration Method and Stability. In this section we identify the 
tasks our algorithm for selecting the iteration method should address. The step size 
hacc is the largest step size which would yield the desired local accuracy. There are 
two potential restrictions on this step size: The step size hiter is the largest for which 
the iteration contracts in the norm of the code. The step size hstable is the smallest 
step size h for which hX1 is on the boundary of the stability region for some 
eigenvalue XA offy with Re(Xi) < 0. 

When we considered A-stable methods in [10], the restriction due to the iteration 
method was the only one present because hstable is infinite by definition. The 
restriction can be quite severe. When simple iteration is used, hiter is defined by 

hiter Y I Ify ll = 1. Because 1fy 1 XA for all eigenvalues XA of fy, the step size must 
satisfy ghiter i 1/y. This is exactly the restriction imposed by stability for a 
method with an absolute stability region consisting of the half-disc of radius l/y. 
Stating this necessary condition on hiter in this way gives some insight as to the role 
of the iteration method. The restriction can be still more severe because the norm of 
the Jacobian can be much larger than the spectral radius of the Jacobian. For some 
standard test problems, the difference amounts to several orders of magnitude. 

Problems for which A(a)-stable methods are appropriate have hstable infinite and 
the situation is the same as with an A-stable method. The basic task is to recognize 
when we can use a cheap iteration-simple or Jacobi-and when we must use a 
simplified Newton iteration. This must be done inexpensively, at virtually every step, 
and switching iteration methods must be efficient. In [10] we described how to do 
this and here we refine the procedure with Enright's idea and the use of the Jacobi 
iteration. 

Because we want robust codes, we must consider what happens when some 
eigenvalue of fy is close enough to the imaginary axis that hstable is finite. One 
possibility is that hacc < hstable. Such a case is no different from one with hstable 

infinite and needs no more comment. If, on the other hand, hacc is comparable to, or 
greater than, h stable, the formula actually exhibits a stability restriction. 

The essential difficulty we face when the formula exhibits a stability restriction is 
that the estimate hest of hacc varies above and below hstable as described in Section 4. 
We shall try to devise an algorithm which will avoid unnecessary evaluation of 
Jacobians in this situation. This is a general difficulty unrelated to our switching of 
iteration methods. Indeed, if hiter < hstable, there is no interaction at all. Typical 
numerical methods have a region of absolute stability containing a half-disc of 
radius /3 (van der Houven [4, p. 83] calls /3 the general stability boundary). If one 
compares /3 to 1/y for typical methods, it is seen that often there will be no 
interaction of the two restrictions on step size if simple iteration is used. On the 
other hand, if the structure of fy is favorable, h iter can be much larger than h stable 

when the Jacobi iteration is used. Thus interaction of a cheap iteration method and 
the stability restriction is probably not common, but is certainly possible. For this 



TYPE-INSENSITIVE ODE CODES 115 

reason, we must be careful that our scheme for switching iterations does not lead to 
a lot of unnecessary work should the step size used vary about hiter. 

7. An Algorithm. In [10] we did not fully specify when the change of iteration 
method should be made, nor did we go into details of implementation. In our 
numerical experiments we have found that the decisions are not critical, except in 
the presence of a stability restriction. Here we shall describe one approach which 
seems to work satisfactorily. The algorithm might appear to be rather different from 
that outlined in [10], but on close examination is seen to be essentially the same 
when an A-stable formula is used. Besides the fact that A(a)-stable formulas are now 
treated, an additional iteration method and a different way of handling Jacobians 
contribute to the different description. 

The various decisions interact with one another so that some reflection is 
necessary to fully appreciate the algorithm. To help the reader follow it, we split this 
section into subsections which correspond roughly to modules in a computer 
implementation. Translation into code is still not completely straightforward because 
we detail only those matters relevant to this paper. In each subsection we provide 
arguments for proceeding as we do. The approach we take is reasonable and works 
adequately, but there is room for improvement. It is hoped that presenting the 
algorithm in this way will facilitate future development of it. 

7.1. Initial Iteration Method. The first step must be taken with simple iteration. No 
Jacobian is formed initially, and if simple iteration will suffice for the entire 
integration, the algorithm described will never form a Jacobian, one of our goals. 
However, if a Jacobian ever is formed, we shall not use simple iteration again. For 
the reasons given in Section 4, we prefer to use the Jacobi iteration method instead. 

Just how the initial step size is selected is extraneous to this paper. On the other 
hand, our algorithm applies a sensitive test that this step size reflects the initial scale 
of the problem by insisting that simple iteration converge. This cheap iteration 
allows the code to recover inexpensively from an initial step size which is far too 
large. 

7.2. Evaluate Implicit Formula. Here we have accepted values (xn, yn) and wish to 
compute an approximate solution Yn+ l at x"+Il = xn + h. An iteration has already 
been selected for the attempt to evaluate the implicit formula for Yn 1. 

First a prediction yn+? is made, and then we begin iterating. How one decides 
when the implicit formula has been solved adequately is extraneous to this paper, 
but we do need to point out that some procedures allow the possibilities that the 
predicted value or the first iterate be accepted; see, for example, [6], [8], [15]. 

Whenever two or more iterations are made, a rate of contraction is estimated. The 
possibility of failure is not even considered until two iterations are made so that a 
rate estimate is available. It is very helpful that the rate for both the simple and the 
Jacobi iteration can be regarded as proportional to the step size. In [8] we argued 
that it is reasonable to proceed as if this were also the case with the rate for the 
simplified Newton interation. In our algorithm the step size in the factored iteration 
matrix is always that being attempted. This is the case of the analysis of [8] which is 
best justified. From proportionality and an observed rate, h iter' the largest step size 
which would yield convergence with the current iteration method, is estimated. 
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If the observed rate is not less than 1, the iteration is certainly not contracting, so 
we go to subsection 7.2.1 dealing with a failure to converge. If the prediction is poor, 
or if the rate is slow, many iterations might be necessary. It is best to specify a 
maximum allowed number of iterations and to proceed to 7.2.1 if it is attained. In 
our research code this maximum was 5. We actually used the observed rate to 
predict if convergence would not be attained within the allowed number of itera- 
tions. This was done as described in [8, p. 109]. It proved quite helpful to terminate 
the iteration early in this way. 

If convergence is secured, we proceed to 7.3 where the accuracy of yn+? will be 
checked. If two or more iterations were made, an estimate of hiter is available. If 
fewer than two iterations were made, no estimate of hiter is ordinarily available. 
However, the rest of the algorithm may cause subsection 7.2 to be repeated: when 
convergence is not obtained, and when it is obtained, but yn+l is not accurate 
enough, the step from xn is attempted again with a smaller step size. An hiter 
estimated in one try is at our disposal for subsequent tries provided the iteration 
method was not changed, as will be seen to be typical. Thus it could happen that 
convergence is obtained in fewer than two iterations, but an estimate of hiter is 
available. 

7.2.1. Convergence Failure. In traditional algorithms a new Jacobian must be 
formed at this time because, to save storage, it is overwritten by the iteration matrix 
and destroyed in the subsequent factorization. Saving a copy of the Jacobian and 
Enright's idea both allow us to reuse Jacobians so that we may hope to avoid the 
considerable expense of forming unnecessary Jacobians. Enright's idea avoids the 
storage penalty associated with saving a copy of the Jacobian and also avoids the 
cost of a factorization. 

There are two basic tools for securing convergence. One is to reduce the step size. 
This has two good effects. The predicted value Y2?+ is improved and the rate of 
contraction is improved. The other tool is to form a new Jacobian. Here the 
simplified Newton iteration with a Jacobian evaluated at some previously computed 
point must be regarded as a different iteration from that using a Jacobian evaluated 
at a current point. In particular, we cannot predict the effect on the rate of 
contraction due to forming and using a current Jacobian; it is hoped that the rate 
will be better. 

We argue that in conjunction with other aspects of our algorithm, reduction of the 
step size is always the appropriate response to failure of convergence. We insist that 
the very first step be carried out with simple iteration for reasons amplified in 
another subsection, so do not consider forming a Jacobian then. After the first step 
one has experience in a preceding step from which to predict what should happen in 
the current step. Of course,the step size selected for the current step is predicted to 
yield the desired accuracy. In our algorithm it is also predicted from solid evidence 
to yield convergence of the iteration method. The only time we cannot make such a 
prediction is when a Jacobian is evaluated at a current point and a simplified 
Newton method is tried in the current step. Later we shall amplify "current point" 
and note here only that, in this last circumstance, we certainly do not want to form a 
new Jacobian. Thus we reduce the possibilities to considering an appropriate 
response when we fail to get convergence, even though we have predicted on the 
basis of experience that the step size should yield accuracy and convergence. 
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It may happen that we just missed getting convergence because the rate is a little 
too slow or the predicted value a little too far away. There is no justification then for 
going to the expense of forming a new Jacobian when a relatively small change of 
step size will suffice. 

If the rate of contraction is very slow, perhaps the process is not even contracting, 
or Yn?+?l is very far away, some of our basic assumptions justifying our predictions 
must be invalid. One possibility is that y(x) or f(x, y) does not change smoothly on 

[xw, xn+1]; for example, some term in f has a discontinuity. If the numerical solution 
can be advanced at all, the appropriate response seems to be to reduce the step size. 
Evaluating a Jacobian as traditionally done might well be a complete waste of effort; 
see subsection 7.4. Another possibility is that the problem has not changed char- 
acter, the formula has. If the step size corresponds to being outside the stability 
region of the method, yn+, may be a very poor approximation to y(xn+I). This can 
lead to convergence failure in two ways: The predicted Yno+ ? might reflect the smooth 
behavior of y(x) and so be far away from Yn+ 1. Even if the rate of contraction is 
adequate, a convergence failure might then occur because too many iterations are 
needed. Alternatively, the Jacobian might vary rapidly as a function of the depen- 
dent variables so that an approximate Jacobian which is a good approximation to 

f(xn+ 1, y(xn+ )) might be far away from y(xn+ 1, Yn+ ?) This could mean that the 
prediction of a good rate of contraction is incorrect and there is a resulting failure of 
convergence. It is crucial that we not form a Jacobian when the stability region is the 
source of the trouble. It might help us to compute Yn+ , but the effort is misdirected. 
Should we get convergence, we expect then to reject Yn+ l on grounds of accuracy. 
The appropriate response is to reduce the step size which will restore stability and 
the accuracy of Yn+ 1. Thus, in every case, an appropriate response is to reduce the 
step size without forming a new Jacobian. 

From proportionality we estimate how much to reduce the step size to secure an 
adequate rate of convergence. In our research code we aim at a rate of 0.5. A 
significant reduction should be made to account for a possible lack of proportional- 
ity of rate and for a predicted solution which is not quite good enough. In our 
research code we required a reduction of at least a factor of 0.5. 

In our experience a signal that a very rapid change of step size is needed often 
arises from a failure of some basic assumption. For this reason we limit the step size 
reduction. In our research code we did not allow the step size to be reduced more 
than by a factor of 0.1. Of course,very slow observed contraction, or divergence, 
result in this maximal reduction. 

In only one situation do we change iteration method in this subsection. The step 
size is always halved or more. If the step was attempted with Newton's method, we 
have at our disposal an estimate of the largest step size for which the Jacobi iteration 
with this Jacobian matrix would converge at an acceptable rate. Should the step size 
be reduced enough that we can switch, we do so. This is one way the algorithm can 
respond to a change in character of the problem. There is no cost associated with the 
switch, and we have excellent reason for believing the Jacobi iteration will succeed 
and yield rapid convergence. The benefit is an important reduction in the overhead 
involved in solving linear systems of equations and in changing step size. 

7.3. Test Local Error. Having formed yn+I successfully, its accuracy is now 
estimated and h est' an estimate of the largest step size which would yield the desired 
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accuracy is formed. If yn+ is not accurate enough, we go to 7.3.1 and otherwise, to 
7.3.2. 

7.3.1. Reject the Step. If y11+ is not accurate enough, h est is smaller than the step 
size h actually tried. The step to xn+ l is rejected and another try made with a smaller 
step size. There are a variety of practical issues involved in selecting the new step size 
with the consequence that it is not simply hest' However, the new step size h will be 
smaller than one which gave acceptable convergence in the computation of yn + . The 
iteration method used and the prediction scheme should therefore be more effective 
with this new step size. The only reason for considering a change of iteration method 
is that it might be possible to switch from a simplified Newton to a Jacobi iteration. 
If this is feasible, we do so as described at the end of subsection 7.2.1. 

Having selected a new step size and switched to a cheaper iteration when feasible, 
we go to the beginning of 7.2 and try again. 

7.3.2. Accept the Step. When we decided to accept yn+, we formed hest. There are 
a variety of practical issues involved in selecting a step size for the next step with the 
consequence that it is not simply hest' Several are significant to our algorithm. It is 
not prudent to let the step size increase greatly in a single step. When a simplified 
Newton iteration is being used and only a small increase in the step size appears 
possible, the increase in efficiency due to a slightly bigger step size is not worth the 
cost of changing the iteration method. There is a common tactic which is of 
fundamental importance in our special situation, so we shall expand upon it. 

It is quite useful to note whether there was an unsuccessful attempt to step from 
xn before the present one succeeded. A failure to get convergence, or a rejected step, 
tell us that the attempted step size was too optimistic. It can happen that hest 
estimated from a shorter, successful step size is also too optimistic: A not uncom- 
mon situation is that the problem, i.e., y(x) or f(x, y), changes dramatically in the 
course of the first step size tried, e.g., there is a discontinuity in f at some Xd. The 
smooth behavior up to Xd suggests a large step size is possible, but this results in step 
failures until one tries a step landing short of Xd. The smooth behavior up to this 
point causes the cycle to be repeated. A simple but helpful tactic is not to allow a 
step size increase after any step involving an unsuccessful try. The device is of 
general value, but notice how it fits in here. It is a response to a dramatic change of 
problem. It is an equally valid response to a dramatic change of the behavior of the 
formula, namely, stepping outside the stability region. The tactic smooths out the 
behavior of the step sizes in a most desirable way. 

Having chosen a step size we would like to try, we now ask if we need to improve 
the iteration method in order to evaluate the implicit formula with such a step. As 
we noted in 7.2, it may happen that convergence was so good in the step just taken 
that we were unable to estimate h iter. In view of the fact that the new step size 
cannot be greatly larger than this one for which convergence was so good, there is no 
point to changing iteration methods. In such a case we proceed to the next step via 
7.5. 

We anticipate that the current iteration method will converge at rate, say, 0.5 if 
h < 0.5 hiter (or hitmE,, if the Jacobi iteration is used-see Section 4). If we predict 
adequate convergence in this way, we retain the iteration method and go to 7.5. 
Otherwise we go to subsection 7.4 to improve the iteration method. 
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7.4. Improve Iteration Method. Here we turn to a more powerful iteration method 
so that we can proceed with a step size appropriate to the smoothness of the 
solution. There are three cases corresponding to the three methods that might have 
been used to take the successful step. In each we choose to form an approximate 
Jacobian at a current point, but the reasons are rather different. 

If the step was taken with simple iteration, we have no choice because both the 
alternatives require the Jacobian. If the step was taken with a simplified Newton 
iteration, the only improvement we consider is to form a current Jacobian. 

If the step was taken with the Jacobi iteration, the diagonal of an existing 
Jacobian was used. It is tempting to switch to the simplified Newton iteration with 
the old Jacobian matrix. The trouble is that there is no information available to 
predict whether this will suffice. It is true that the Jacobi iteration allows us to solve 
some stiff problems for which it is reasonable to presume that the Jacobian is 
roughly constant for many steps. If the Jacobian has not changed much, using the 
whole Jacobian would be adequate. We consider the Jacobi iteration to be ordinarily 
only a minor improvement to simple iteration and expect it to be used basically on 
nonstiff portions of the integration. In such portions we expect the solution and the 
Jacobian to change significantly. For this reason, on grounds of simplicity, and to 
support decisions made in subsection 7.2.1, we choose to form a new Jacobian in this 
case, too. 

When it appears desirable to form a new approximate Jacobian to aid in stepping 
from xn to x,,1+ , traditional algorithms approximate fy(xi+ 1 yX?Y)+ I). If Jacobians are 
saved, there is a good reason to approximate fj(x, yn) instead. If all is going well, 
the two possibilities behave the same. It is a fundamental hypothesis that the 
Jacobian is changing slowly, so there should be little difference when computing 

Yn+ There is even less reason to distinguish the procedures when the Jacobian is 
used for the computation of later steps, Yn+2 Yn + 3 .- A real difference arises when 
the attempt to compute yn + is unsuccessful. Because the character of the problem 
might have changed on [xv, xn+], it is necessary to reevaluate f,(xn+1, Yno+I) with 
the new step size. Proceeding as we suggest, there is no reason to form a new 
Jacobian. The traditional algorithms do not save the Jacobian so one must reevaluate 
anyway, in which case one might as well evaluate at the current predicted solution. 

On forming the Jacobian, hitm,,,, is estimated for the Jacobi iteration as described 
in Section 4. If h < hitm.,, we predict the Jacobi iteration will contract at a rate of at 
least 0.5. In such a case we choose the Jacobi iteration for the next step. Otherwise 
we choose the simplified Newton method with this new Jacobian. 

Having selected a step size and an iteration method we proceed to 7.5. 
7.5. Process Output. After successfully computing (xn +I yn+), the result is 

returned to the user if it was requested. The code would be reentered at 7.2 if the 
user wishes to continue. The user might shorten the step size proposed for the next 
step for a variety of reasons. The code might also shorten it in this section to deal 
with future output whether or not control is returned to the user. If control is not 
returned to the main program, it now passes directly to subsection 7.2. 

The point we make here is that the step size proposed may be reduced for some 
reason before attempting the next step. This can only improve the performance of 
the prediction scheme and of the iteration method. It also implies that factorization 
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of iteration matrices for the Newton method should be done in subsection 7.2, when 
the step size to be attempted is definitive. 

8. Some Numerical Results. We have written a research code based on the 6-family 
of formulas 

Yn+ I = Yn + h[6f(xn, YJ) + (1 - )f(xn+ 1, Yn+ I)] 

When applied to y' = Ay with constant step size h, the stability function R(X) is 
given in 

R(I\)yn 
1 + OX 

Yn+l = R()Yn=1- (1 _ )XYn~ 

where X = Ah. Our experiments were performed with 6 = 0, the backward Euler 
method, which is A-stable and has R(oo) = 0; 6 = 0.1 which is A-stable, but less 
damped since R(oo) = -1/9; and 6 0.9 which has a (small) finite stability region. 
The local truncation error is 

lte =[-(1 - ( )]h2y"(x) + 0(h3). 

The leading constant is then 0.5, -0.4, + 0.4 in the three cases, respectively. 
In general- the code is written in accordance with the proposals of [6], [8], [15]. The 

term y" in the local truncation error is estimated by a second divided difference of 
solution values. Enright's idea is used for the simplified Newton scheme. Analytical 
Jacobians were used in all our experiments. 

The code was written for research purposes so that the results presented here are 
intended to illustrate switching iteration methods rather than the behavior of a piece 
of software. Some computations were made with the production BDF code LSODE 
[3]. To make it more comparable we restricted the order to 1, so refer to the results 
as computed with LSODE1. Unfortunately, the codes are tuned very differently and 
at order 1 the cost is a sensitive function of the accuracy achieved. A direct 
comparison is also difficult because LSODE does a lot of unnecessary Jacobian 
evaluations which result in very fast convergence and fewer function evaluations. 
Here we shall use the LSODE1 results merely to indicate the general range of 
Jacobian evaluations as made by a traditional algorithm. 

Our numerical results were obtained from selected members of the test set [2]. The 
observations of [9] are very pertinent. For example, it is pointed out in [9] that the 
problem E2 is not really stiff, so it provides an interesting test of our algorithm. The 
problem was solved with the three scalar, pure absolute error tolerances 10-2, 10-3, 

10-4. The formula with finite stability region, 6 = 0.9, did not form a Jacobian in 
any case so that the integrations were all carried out entirely with simple iteration. 
The A-stable methods, 6 = 0 and 0.1, formed exactly one Jacobian for each 
integration. However, all steps were carried out with either the simple or Jacobi 
iteration for all the integrations. This performance is about all we could hope for 
from our switching algorithms. LSODE1 used 7-11 Jacobians when doing these 
integrations. 

For E2 the solutions with 6 = 0.1 and 0.9 were of comparable efficiency, and both 
were notably more efficient than the solution with 6 = 0. This was expected from the 
local truncation errors. With the truly stiff problems it is too expensive to carry out 
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the entire integration with a formula with finite stability region. For this reason the 
runs with 6 = 0.9 were limited to 100 successful steps for all our examples. 
Computations with this formula simulate the use of an A(a)-stable formula on a 
problem which exhibits a stability restriction. The experiments we report give a good 
idea of the performance of our algorithm in a situation we regard as very unusual in 
practical computation. 

The problem A2 has a constant Jacobian. At the tolerances 10-2, 10', the 
formula with 6 = 0.9 formed one Jacobian, but all 100 steps were taken with a cheap 
iteration method. At the tolerance 10-4, no Jacobian was formed at all. One reason 
for using A2 as a test problem was to point out that, with Enright's device and our 
algorithm for deciding when to form a Jacobian, we cannot form more than two 
Jacobians when the differential equation has a constant Jacobian, as it does here. 
This gratifying observation is easily seen to follow from the description of Section 7 
and is indicative of the soundness of the approach. In all the runs with 6 = 0 and 
0.1, exactly two Jacobians were formed; LSODE1 forms 20-38. 

This problem also illustrates the fact that switching methods can be advantageous 
even for a stiff problem. For example, with 6 = 0.1 at tolerance 10-2 there were 45 
successful steps. Of these 12 were taken with simple iteration, 18 with Jacobi, and 15 
with Newton. This is quite a lot of steps with cheap iterations for such a crude 
tolerance. At the tolerance 10^-4, the 333 successful steps were split among the 
iterations as 116, 196, and 21. The results with 6 = 0 are quite similar but 
correspondingly more expensive as expected from the local truncation error. 

The problem A2 has an obvious limit solution. The numerical results at the end of 
the interval agreed with the limit solution to about one more digit than the local 
error tolerance in every case. With the A-stable formulas there were at most two 
convergence failures and two rejected steps in a run. With 6= 0.9 there were no 
convergence failures, but there were a significant number of rejected steps. The most 
was 7 at the tolerance 10-2. This is to be expected as a consequence of the 
interaction with the stability region as discussed in Section 6. 

We believe the Liniger-Willoughby problem Dl should be solved in the original 
variables for reasons presented in [9]. When this is done, the problem is linear with a 
nonconstant Jacobian. The problem was solved with scalar, pure absolute error 
tolerances 10-2 and 10-3. 

In every case the code took exactly two steps with simple iteration. In the case of 
the formula with a finite stability region, 6 = 0.9, one Jacobian was formed for each 
integration, but the Newton scheme was never used. The stability region had no 
serious effects: there were no convergence failures; one integration had 5 rejected 
steps, the other 4. 

The solutions of the Liniger-Willoughby problem with the two A-stable formulas 
were quite similar, with 6 = 0.1 somewhat more efficient. There were 1-2 conver- 
gence failures in each integration. There were a significant number of rejected steps, 
the worse case being 14 rejections associated with 96 successful steps at tolerance 
10-2 with 6 = 0.1. We have also found a lot of steps rejected with other kinds of 
methods applied to this problem. In [7] we found that how cautious the step size 
selection algorithm is plays an important role in this matter. The algorithm imple- 
mented in the 6-family code is bold, using a procedure suitable for nonstiff 
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problems. Our algorithm for selecting the iteration method does not cause a new 
Jacobian to be formed on a step rejection so that the number of Jacobians formed 
ranged from 4 to 5, despite a relatively large number of step rejections. By way of 
comparison, LSODE1 used 24-31. 

The Robertson problem D2 is a nonlinear problem of chemical kinetics, which we 
solved for the scalar, pure absolute error tolerances 10-2, 10-3, 10-4. The formula 
with a finite stability region, 6 = 0.9, did not form a Jacobian for the tolerance 10-2 

but formed just one for the other two tolerances. All steps were taken with a cheap 
iteration method. There were no convergence failures and at most 4 rejected steps in 
an integration. The A-stable formulas had no convergence failures and at most one 
rejected step in an integration. The number of Jacobians formed ranged from 2 to 3. 
LSODE1 formed 15-45. Prothero [14, p. 135] presents some similar computations 
with a more traditional code based on a member of the 6-family. The results are not 
directly comparable, but it is worth remarking that his code uses on the order of 20 
Jacobians. 

9. Conclusion and Acknowledgements. We believe that the analysis and numerical 
results presented here demonstrate the feasibility of making some kinds of ODE 
codes type-insensitive by the automatic selection of iteration method. Extension of 
the results of [10] to A( a)-stable formulas is more of conceptual than practical 
importance. However, we have in addition fully specified the algorithms of [10] and 
introduced several important technical improvements. Although stability restrictions 
are of little practical importance with the popular A(a)-stable formulas, we have 
shown a way to enhance the performance of codes then, quite aside from the issue of 
selection of iteration method. 

The author and his associates L. R. Petzold and H. A. Watts are engaged in a 
project to develop a new piece of mathematical software for the solution of ODEs. 
Towards this end a number of investigations are being made independently and in 
various combinations of team members. The work reported here is an independent 
investigation done by the author, with computing assistance provided by L. S. Baca. 
The author has benefited from frequent discussions of the investigation with the 
other members of the team. Integration of the results with the work of the others has 
led to notable improvements. 
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